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Our Solution – Overview 
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Our Solution – FEAT[1]
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[1] Ye, Han-Jia, et al. "Few-shot learning via embedding adaptation with set-to-set functions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

 FEAT:

 Visualization of embedding adaptation on

ORBIT dataset using T-SNE.



Our Solution -- Uniform Clip Sampler
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Our Solution -- Invalid Frame Detection

(a) Normal Frames (b) Blurry Frames (c) Frames without objects

RGB Frame Edge detection RGB Frame Edge detection RGB Frame Edge detection

 Canny edge detector is used to detect the frames without objects presented.

 Frames without objects are then removed from support set. 



Our Solution -- High-quality Code

 Modularity

• Decouple the logic of hierarchical sampling, 
video frame loading and tensor preparing of 
each episode into multiple shallow classes.

• Our codebase design encourage reusing 
modules.



Our Solution -- High-quality Code

 Compatibility
• Be interoperable with PyTorch standard domain specific libraries, e.g. torchvision
• Apply similar API to follow common usage in standard supervised learning:

Use `torch.utils.data.Dataset` to prepare tensors

Use `torch.utils.data.DataLoader` to handle batching, shuffling and perfecting 

 Performance

• Use the multithreading to hide the latency of loading video frames from the disk. 

• Use 100% of GPU to accelerate the training and the testing.



*Training # workers # threads Total times per 

episode (s)

Original ORBIT 

Codebase

4 1 2.61

Ours 4 4 2.20 (1.18x)

Ours 4 16 1.08 (2.41x)

Ours 8 16 0.94 (2.77x)

*Testing # workers # threads Total times (s)

Original ORBIT Codebase 4 1 233

Ours 4 4 201 (1.15x)

Ours 4 16 152 (1.53x)

Ours 8 16 86 (2.70x)

* Training: Average time of preparing tensors of 100 episodes
* Testing: Total time of preparing 300 testing videos from 17 users

Performance Benchmark 



Our Results
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ProtoNet (Official) Random N N 65.00 (-1.27)

ProtoNet (Ours) Random N N 66.27

FEAT Baseline Uniform N N 69.17 (+2.90)

FEAT + Uniform Uniform N N 70.69 (+4.42)

FEAT + Aug + Uniform Uniform Y N 71.57 (+5.30)

Ours Uniform Y Y 71.69 (+5.42)

 Quantitative Results



 Quantitative

improvements

of each user

Our Results



Thank you！


